Eﬂ NK broker

AUvergne, Développement d'Applications et Calcul en Environnement Scientifique
AuDACES, Clermont Ferrand - France, 9 June 2022

I Emille Ishida, Julien Peloton and Anais Moller
Q (255 on behalf of the Fink Team

eeeeeeeeeeeeeeeeeeeeeeeeeeeeee



The Rubin Observatory Legacy Survey of Space and Time
(aka LSST)

In a nutshell:
e telescope: 6.7-m equivalent
e world’s largest CCD camera: 3.2 Gpixels

In numbers:
e 10-year survey, starting 2024+
e 1,000 images/night = 15TB/night
e 10 million transient candidates per night
o Publicly available...
o ... but huge!
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Data path o _W;_@

Machine learning
Catalog association
Streams join

every ~30 seconds down to

10 million alerts
per night...
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We would like the interesting ones .3
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Rubin broker landscape
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Fink design

v Deployed in the cloud (VirtualData, CC-IN2P3%) v/ Survey cross-match
v Collecting alert data from ZTF v Public catalogue cross-match
v Benchmarked for LSST data volumes v Classification (ML, BNNs, Adaptive Learning)
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(What is an alert?)

Alerts based on Difference Image Analysis

Each alert contains
e Information about the new detection
(magnitude, position, ...)
e Neighbours information (xmatches, etc)

Difference magnitude
%
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e Historical information if the object has

+ Difference magnitude DC magnitude DC apparent flux

been seen previously
e Small images around the detection
(60x60 pixels)
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How to classify alerts?

Broker world
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How to classify alerts?

Broker world
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Case study: Kilonova

Problem 1: there are no labels, only 1 confirmed detection

Problem 2: we need to find it fast

Fit for type KN lightcurve
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Data set:

Simulated ZTF light curves

Feature extraction:

Principal components from perfect sims

Classifier:

Random Forest
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Case study: Kilonova

Broker world

Domain specialist world (this is you)
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Case study: Kilonova

Broker world

Brokers
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GRANDMA Observations of ZTF/Fink Transients during Summer 2021

Extra imaging from
Aivazyan et al., 2021, arxiv:astro-ph/2202.09766

professional and 1

amateur
[ 35 million candidate alerts astronomers
e 100 surviving selection cuts
e 6 followed-up by GRANDMA

WJ Previous talk!



For LSST ...

Broker world
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Fink Sci
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Accessing Fink data

Two entry points for users:

e Live streams (Kafka streams)
o Personalisable filters to select objects/parameters of interest
o Data received “live” (+processing delays)
o https://qithub.com/astrolabsoftware/fink-client

e Science Portal & REST API
o All data will remain accessible for the full survey duration
o https://fink-portal.org

e TOM module
o https://qgithub.com/TOMToolkit/tom_fink

e Statistics information:
o https://fink-portal.org/stats

i :



https://github.com/astrolabsoftware/fink-client
https://fink-portal.org
https://github.com/TOMToolkit/tom_fink
https://fink-portal.org/stats

Take home message

e Preparing for LSST means be prepared to define what is
interesting

e Automatization of recommendation systems can enable
improved classification and discovery

e Fink was specifically designed to enable incorporation of
complex queries (domain knowledge)
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The best of Fink ...

... are the people
| ElccPe - behind it!

1st Fink collaboration meeting
LAPP, 19 - 20 May 2022

https://indico.in2p3.fr/event/26707/

Wﬂ.l You are welcome to join!


https://indico.in2p3.fr/event/26707/

[F//NK] Summary

Fink is a broker designed specifically for LSST
e Enabling science by applying state-of-the-art technology.

e Technology Readiness Level (TRL) 6/9.

e Currently digesting ZTF stream

First science modules deployed and testing capabilities beyond expectations: SNe,
GRB, KNe, microlensing, ...

New proposals for science modules are welcome! https://fink-broker.org/joining.html

More info:
e Fink white paper, arXiv: astro-ph/2009.10185
o Website & Science Portal: https:/fink-broker.org
WJ e API Tutorials: https./qgithub.com/broker-workshop/tutorials/tree/main/fink



https://fink-broker.org/joining.html
https://arxiv.org/pdf/2009.10185.pdf
https://fink-broker.org
https://github.com/broker-workshop/tutorials/tree/main/fink
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Case study: Kilonova

Broker world

Brokers

EﬂﬂN K

GRANDMA Observations of ZTF/Fink Transients during Summer 2021

Extra imaging from
Aivazyan et al., 2021, arxiv:astro-ph/2202.09766

professional and 1

amateur
[ 35 million candidate alerts astronomers
e 100 surviving selection cuts
e 6 followed-up by GRANDMA
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To remember

e Fertile ground for machine learning applications and interdisciplinarity
e Designed to accommodate deep and adaptive learning methods
e Cross-match with LSST images for users with data rights

First science modules deployed and testing capabilities beyond expectations:
SNe, GRB, KNe, microlensing, ...

More info:
o Fink white paper, arXiv: astro-ph/2009.10185

e Website & Science Portal: https:/fink-broker.org
e API Tutorials: https://qithub.com/broker-workshop/tutorials/tree/main/fink

Vi



https://arxiv.org/pdf/2009.10185.pdf
https://fink-broker.org
https://github.com/broker-workshop/tutorials/tree/main/fink

Example: SN classification

High-accuracies using Deep
Learning

. SuperN Nova

*. ¢, open source photometric
e classification

Vi

Moller and Boissiere, 2020, MNRAS
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All science modules are built by the community
Outputs from all science modules will be publicly
available

Hosted at CC-IN2P3: cross-match with LSST image
data available for users with data rights

Distributed Machine Learning

Increasingly more accurate classifications and anomaly
scores using Adaptive Learning

Learn Machine Learning
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Ishida et al., 2019, MNRAS



Forecasted: 10 million alerts per (French Site

Data Release Pioduction
Long-term Storage (copy 3}
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Fink scientific objectives

e Fink is a community-driven effort, open to anyone

e Current fields of expertise

Supernovae

Kilonovae

Microlensing

Multi-messenger astronomy
m GRB, X, neutrino, GW...

o Anomaly detection

o O O O

e \We are open to new contributions!
o Recent: Solar System Objects

W—l o ... <your project here!>

https://fink-broker.org/joining.html



https://fink-broker.org/joining.html

case study: Early SN la classification

Problem 1: labels are expensive, resources are limited

Goal: optimize classification results

Problem 2:_trammg (spectroscopically clas_sn‘_/ed light curves) is not with small training
representative from test (purely photometric light curves)

Ideal data situation
Test
ApY!

Target sample

Features

Training sample

Features
+

Labels

Vi



case study: Early SN la classification

Problem 1: labels are expensive, resources are limited

Goal: optimize classification results

Problem 2:_ training (spectroscopically clas_sn‘_/ed light curves) is not with small training
representative from test (purely photometric light curves)
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case study: Early SN la classification

Problem 1: labels are expensive, resources are limited

Goal: optimize classification results

Problem 2:_ training (spectroscopically clas_sn‘_/ed light curves) is not with small training
representative from test (purely photometric light curves)

Test

Vi



case study: Early SN la classification

Problem 1: labels are expensive, resources are limited

Problem 2: training (spectroscopically classified light curves) is not

representative from test (purely photometric light curves)

Vi

Test

Goal: optimize classification results
with small training

Strategy 1: extract information from

sims using BNN

SuperN Nova

;s ¥+ open source photometrlc

Moller and Boissiere, 2020, MNRAS
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case study: Early SN la classification

Problem 1: labels are expensive, resources are limited

Problem 2: training (spectroscopically classified light curves) is not
representative from test (purely photometric light curves)

Goal: optimize classification results
with small training

Strategy: optimize the construction
of training samples

Test

7



case study: Early SN la classification

Active Learning
Optimal experiment design

Learn Machine Learning

a modr'» Model “\
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case study: Early SN la classification
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Data set:
52 673 alerts with labels from TNS or simbad, of which
3 033 were SN la (~7%)

Initial training:
10 alerts (5 SNla, 5 others)

Feature extraction:
Sigmoid fit, 3 rising points
Goodness of fit, SNR, number of points after cuts

After learning loop:
310  intraining
52 363 in test

Inspired by [shida et al., 2019 -- From COIN Residence Program #4
Results from: Leoni et al.. arxiv:2111.11438. A&A. in press



https://cosmostatistics-initiative.org/portfolio-item/active-learning-for-sn-classification/
https://arxiv.org/abs/2111.11438

case study: Early SN la classification

Results after 300 loops:

= RandomSampling

= UncSampling Training: 310 alerts

Testing: > 52 000 alerts
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Choose training sample which lead to better results — Trained ML
and train a Random Forest classifier ... model

W—l Leoni et al., arxiv:2111.11438, A&A, in press



case study: Early SN la classification

Broker world
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Case study:

Early SN la classification

Broker world

Brokers
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Case study: SN classification

Fink Early SN la candidates reported to TNS from
November/2020 - March/2022:

e 4661 Early SN la candidates 400
° 573 spectroscopically classified
e Contaminants are mostly other SNe 2
o 1LBV = 9009
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WJ Plot by Julien Peloton (CNRS/IJCLab)



Curiosities: the mystery

All ZTF alerts on 2021-03-18 between 12:33:03.996 and 12:34:03.996 UTC
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% SSO API tutorial: https./github.com/broker-workshop/tutorials/blob/main/fink/sso/sso.ipynb


https://github.com/broker-workshop/tutorials/blob/main/fink/sso/sso.ipynb

Curiosities: the mystery

All ZTF alerts on 2021-03-18 between 12:33:03.996 and 12:34:03.996 UTC (zoom)
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% SSO API tutorial: https:/qgithub.com/broker-workshop/tutorials/blob/main/fink/sso/sso.ipynb
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https://github.com/broker-workshop/tutorials/blob/main/fink/sso/sso.ipynb

Curiosities: the mystery

. Alerts in 1 exposure
Pseudo-Lightcurve

18.8
} } ’ Very fast brightness variation
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2 e Spy satellite?
§1941 e Space debris?
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% SSO API tutorial: https:/qgithub.com/broker-workshop/tutorials/blob/main/fink/sso/sso.ipynb


https://github.com/broker-workshop/tutorials/blob/main/fink/sso/sso.ipynb

Current project highlights

Long transients (Blodin, Pruzhinskaya)

AL for early SN la discovery (Leoni)
Anomaly detection (Pruzhinskaya, Kornilov, Russeil, Beschastnov)

Detection and classification of satellite glints & debris (Karpov)

L O d od o

Search for GRB afterglows (+orphans) (Bregeon, Turpin, Ducoin, Le
Montagner)

Search for Kilonova (Biswas, GRANDMA collaboration)

L L

New techniques to discover SSO objects (Le Montagner)

A New database techniques using graphs (Hrivnac)

WJ Different colors = different groups 4



