Docker & rkt: Linux containerization and applications in
astro/HEP

Sebastien Binet
CNRS/IN2P3/LPC

May 31, 2016

Docker origins

The container revolution

Before 1960, cargo transport looked like:

| ==]

MxN combinatorics: matrix from Hell

Blveld @3

Solution: Intermodal shipping container

Bi==] Qs 8 e s

T |] o i s | i g

T e e e |
| e e e e e

| e e e e e e

B | | e | i
AT | e e e e

Containers - analysis

> enables seamless shipping on roads, railways and sea (intermodal)
» standardized dimensions

> opaque box convenient for all types of goods (privacy)

What is Docker?

Application deployment

.‘. Static website
e Web frontend
(1]

[]
. Background workers
[]
L L

[]

L

[] Analytics DB
L]
B

L)
[1]

Single Prod Onsite Contributor's Customer
Server Cluster Public Cloud laptop Servers

By ——Z@onp

Note: a 3rd dimension (OS/platform) could be considered

Beva‘lllon:mm QA Berver

[m] = =

it
N)
yel
Q

Docker: an application container

®e Static websitt % User DB g¢& Webfrontend = Queue o@ Analytics DB

i

Production Confributor's

Development QA server Customer Data Public Cloud

it

Docker: no combinatorics no more

e oo

.0 »
% e o

Static website

‘Web frontend

Background workers

Development SingleProd Onsite Contributor's Customer
vm i Server Clusier PV Cloixi laptop Servers

Docker

Docker is an open source project to pack ship and run any application as a
lightweight container: docker.io

Note: Although docker is primarily (ATM) Linux-oriented, it supports other
OSes (Windows+MacOSX) at the price of a thin Linux VM which is

automatically installed (and managed) on these systems. See docker
installation

http://www.docker.io
https://docs.docker.com/installation/
https://docs.docker.com/installation/

Docker

Docker is an open source project to pack ship and run any application as a
lightweight container: docker.io
High-level description:

» kind of like a lightweight VM
> runs in its own process space
> has its own network interface
> can run stuff as root
Low-level description:
» chroot on steroids
> container == isolated process(es)
» share kernel with host

» no device emulation

http://www.docker.io

Docker: why?

> same use cases than for VMs (for Linux centric workloads)
> speed: boots in (milli)seconds

» footprint: 100-1000 containers on a single machine/laptop, small disk
requirements

Containers vs. VMs

Containers are isolated,
but share OS and, where

o appropriate, bins/libraries

Container

Docker Engine

Host OS

Docker: why?

Efficiency: almost no overhead

> processes are isolated but run straight on the host
» CPU performance = native performance
» memory performance = a few % shaved off for (optional) accounting

> network performance = small overhead

Docker: why?

Efficiency: storage friendly
> unioning filesystems
» snapshotting filesystems

> copy-on-write

Docker: why?

> provisionning takes a few milliseconds
> ... and a few kilobytes

> creating a new container/base-image takes a few seconds

Why are Docker containers lightweight?

VMs

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual
server

Original App
(No 0S to take
up space,
resources,
or require restart)

Containers

Copy of

App
No 0OS. Can
Share bins/libs

Modifie

Copy on'w
capabilitie
us to only
Between ¢
and contal
I

Separation of concerns

Tailored for the dev team:

> my code

» my framework

» my libraries

» my system dependencies
» my packaging system

> my distro

> my data

Don't care where it's running or how.

Separation of concerns

Tailored for the ops team:
> logs
» backups
> remote access
> monitoring
> uptime

Don’t care what's running in it.

Docker: blueprint

Docker: blueprint

Build, ship and run any application, anywhere.
Docker uses a client/server architecture:

» the docker client talks to

» a docker daemon via sockets or a RESTful API.

docker build .- .,---,;-{ Docker daemon

DOCKER_HOST

docker pull - [Containers

docker run = —f

Docker: basics of the system

0 Push

o

=1

I C

= >

e}

= .
Search

Build

Dockerfile
For
A

Source
Code

0
o
3
+
)
. =
Repository °

13uieuo)
J2u1RIUO)

Docker Engine

Host 1 OS (Linux)

Host 2 OS (Linux)

Docker: the CLI

The docker client ships with many a subcommand:

$ docker help

Usage: docker [OPTIONS] COMMAND [arg...]
docker daemon [--help | ...]
docker [-h | --help | -v | --version]

A self-sufficient runtime for containers.

[...]
Commands:
attach Attach to a running container
build Build an image from a Dockerfile
commit Create a new image from a container’s changes
cp Copy files/folders from a container to a HOSTDIR or to ST
images List images
import Import the contents from a tarball to create a filesystem
info Display system-wide information

[...]

Docker: the CLI

$ docker version

Client:

Version: 1.11.1

API version: 1.23

Go version: gol.6.2

Git commit: 5604cbe

Built: Mon May 2 00:06:51 2016
0S/Arch: linux/amd64

Server:

Version: 1.11.1

API version: 1.23

Go version: gol.6.2

Git commit: 5604cbe

Built: Mon May 2 00:06:51 2016

0S/Arch: linux/amd64

Hello World

Fetch a docker image from the docker registry:

$ docker pull busybox

Using default tag: latest

latest: Pulling from library/busybox

cf2616975b4a: Pull complete

6ce2e90b0Obc7: Pull complete

8c2e06607696: Already exists

library/busybox:latest: The image you are pulling has been verified. Im
Digest: sha256:38a203e1986cf£79639cfb9b2e1d6e773de84002feea2d4eb006b5200
Status: Downloaded newer image for busybox:latest

$ docker images
REPOSITORY TAG IMAGE ID CREATED
busybox latest 8c2e06607696 4 month

Now, run a command inside the image:

$ docker run busybox echo "Hello World"
Hello World

Docker basics

» Run a container in detached mode:

$ docker run -d busybox sh -c \
’while true; do echo "hello"; sleep 1; done;’

> Retrieve the container id:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATE
321claabbcd4 busybox "sh -c ’while true; 4" 3 seco

> Attach to the running container:

$ docker attach 321claaSbcd4
hello
hello
[...]

> Start/stop/restart container

$ docker stop 321claabbcd4
$ docker restart 321claabbcd4d

Docker: public index (aka registry, aka the Hub)

Docker containers may be published and shared on a public registry, the Hub.

» |t is searchable:

$ docker search apache2

NAME STARS OFFICIAL AUTOMATED
rootlogin/apache2-symfony2 7 [0K]
reinblau/php-apache2 6 [0K]
tianon/apache2 4 [0K]

[...]

$ docker pull tianon/apache2

» Run the image and check the ports

$ docker run -d -p 8080:80 tianon/apache2

$ docker ps
CONTAINER ID IMAGE COMMAND PORTS
49614161£5b7 tianon/apache2 "apache2 -DFOREGROUND" 0.0.0.

The registry is also available from the browser:

» hub.docker.com

https://hub.docker.com

Docker: creating a customized image

» run docker interactively:

$ docker run -it ubuntu bash

root@524ef6c2edce: /# apt-get install -y memcached
[...]

root@524ef6c2edce: /# exit

$ docker commit ‘docker ps -q -1°¢ binet/memcached
4242210aba21641013b22198c7bdc00435b00850aaf9ae9cedc53ba75794891d

$ docker run -d -p 11211 -u daemon binet/memcached memcached
a84e18168£1473a338f9ea3473dd981bf5e3dc7e41511a1252f7bb216d875860

$ docker ps
CONTAINER ID IMAGE COMMAND PORTS
aB84e18168f14 binet/memcached "memcached" 0.0.0:3

Docker:

creating a customized image

interactive way is fine but not scalable
enter Dockerfiles

recipes to build an image

start FROM a base image

RUN commands on top of it

easy to learn, easy to use

Docker: Dockerfile

FROM ubuntu:14.04

RUN apt-get update

RUN apt-get install -y nginx

ENV MSG="Hi, I am in your container!"

RUN echo "$MSG" > /usr/share/nginx/html/index.html
CMD nginx -g "daemon off;"

EXPOSE 80

Docker: Dockerfile-I1

> run in the directory holding that Dockerfile

$ docker build -t <myname>/server .
$ docker run -d -P <myname>/server

> retrieve the port number:

$ docker ps
34dc03cdbae8 binet/server "/bin/sh -c ’nginx -g" 0.0.0

or:

$ docker inspect -f ’{{.NetworkSettings.Ports}}’ 34dc03cdbae8

and then:

$ curl localhost:32770
Hi, I am in your container!

docker build

> takes a snapshot after each step

> re-uses those snapshots in future builds

> doesn’t re-run slow steps when it isn't necessary (cache system)

Base Container
Container Mod A’
Image

Docker
Container
Mod A"

Container

Docker Engine

Host is now running A”

Docker Engine

Host running A wants to upgrade to A”.
Requests update. Gets only diffs

Docker Hub

> docker push an image to the Hub

> docker pull an image from the Hub to any machine
This brings:

> reliable deployment

» consistency

> images are self-contained, independent from host

» if it works locally, it will work on the server

> exact same behavior

> regardless of versions, distros and dependencies

Docker for the developer

» manage and control dependencies

» if it works on my machine, it works on the cluster
» reproducibility

» small but durable recipes

Never again:

> juggle with 3 different incompatible FORTRAN compilers
» voodoo incantations to get that exotic library to link with IDL
» figure out which version of LAPACK works with that code

» ... and what obscure flag coaxed it into compiling last time

Development workflow

» Fetch code (git, mercurial, ...)

$ git clone git@github.com:sbinet/my-project.git
$ vim my-project/some-file.cpp &
$ docker run -it \
-v ‘pwd‘/my-project:/src \
-v ‘pwd‘/build:/build \
<my-name>/my-project-base-dev bash

» Edit code
» Mount code inside a build container with all dependencies pre-installed
> Build+test inside that container
> Retrieve the build artifacts under /build
Can be automatized via a Makefile:

> ideally, the my-project-base-dev image definition is provided by the git
repository

rkt

rkt: introduction

rkt is another Go-based application to run containers.
The main differences wrt docker are:
> an improved process model
> an improved security support
> a somewhat more UNIX -y philosophy (one tool per job)

rkt implements the ACI (App Container Images) format to ensure

portability and prevent lock-in.
rkt is also a partner of the OCI (Open Container Initiative) project.

https://coreos.com/rkt/docs
https://golang.org
https://github.com/appc/spec
https://www.opencontainers.org/

rkt: support for standards

ACI/appc and OCI try to standardize a few components of the container/image
ecosystem:

> container image format (appc)

> image distribution (appc)

» runtime (appc, OCI)

» on-disk image format (0OCI)

rkt: process model

rkt Process Model Docker Process Model
’ systemd ‘ systemd
L o) rkt Docker run redis ‘

Docker Engine daemon

> rkt has no centralized "init" daemon
» rkt launches containers directly from client commands

» rkt is thus compatible with init systems (systemd, upstart, ...)

rkt: privilege separation

docker daemon

rkt fetch

docker fetch redis

» standard UNIX group permissions

> signature verification of downloaded images (with simple user privileges)

rkt: hello world
Create a statically linked Go web server:

package main

import (
Illogll
"net/http"

func main() {
http.HandleFunc("/", func(w http.ResponseWriter, r *http.Reques
log.Printf("request from %v\n", r.RemoteAddr)
w.Write([Ibyte("hello\n"))

1))

log.Fatal(http.ListenAndServe(":5000", nil))
}
Build with:

$ CGO_ENABLED=0 go build -ldflags ’-extldflags "-static"’ -o hello ./he
$ file hello

hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically
$ 1dd hello

not a dynamic executable

rkt: create the image

To create the image, use the acbuild tool:

acbuild begin

acbuild set-name example.com/hello
acbuild copy hello /bin/hello

acbuild set-exec /bin/hello

acbuild port add www tcp 5000

acbuild label add version 0.0.1

acbuild label add arch amdé64

acbuild label add os linux

acbuild annotation add authors "Carly Container <carly@example.com>"
acbuild write hello-0.0.1-linux-amd64.aci
acbuild end

P P B L PO P PP B PP

This creates an ACI containing the application code and the needed metadata.

> advantage wrt a Dockerfile: this can easily and seamlessly be
integrated into Makefile -based workflows

https://github.com/appc/acbuild

rkt: run the container

$ rkt --insecure-options=image run hello-0.0.1-linux-amd64.aci

image: using image from local store for image name coreos.com/rkt/stage
image: using image from file hello-0.0.1-linux-amd64.aci

networking: loading networks from /etc/rkt/net.d

networking: loading network default with type ptp

in another terminal:

$ rkt list
UuID APP IMAGE NAME STATE NETWORKS
37e2eeb2 hello example.com/hello:0.0.1 running default:

$ curl http://172.16.28.4:5000
hello

Astro/HEP application

Application to Astrophysics/Cosmology

Imagine a simulation program that is actually an assembly of many multiple
programs:

» a C++ library (compilable with a specific version of g++)

> a FORTRAN library (compilable with a specific version of gfortran)

» python2 bindings

> LAPACK, BLAS & Cython dependencies
After a while you realize, this was only tested on a specific Ubuntu version.

And people want to run or at least develop on their laptops (Linux and/or
Mac0SX)...

Application to Astrophysics/Cosmology
from ubuntu:14.04

run apt-get update -y && apt-get install -y gcc g++ gfortran \
python python-numpy cython libblas-dev liblapack-dev \
make curl git

run mkdir -p /build/jla /build/salt?2
run git clone https://github.com/lesgourg/class_public /build/class &&
cd /build/class && make
run cd /build/jla && \
curl -0 -L http://supernovae.in2p3.fr/sdss_snls_jla/jla_likelihood_v6.
tar zxf jla_likelihood_v6.tgz
run cd /build/jla/jla_likelihood_v6 && \
make && make test_jla
run cd /build/salt2 && \
curl -L http://supernovae.in2p3.fr/salt/lib/exe/fetch.php?media
run cd /build/salt2 && \
tar zxf snfit-2.4.2.tar.gz && \
cd snfit-2.4.2 && \
1s && \
./configure && \
make && make install
run cit clone httpos://github.com/cmbant/CosmoMC /build/cosmomc && \

Application to Astrophysics/Cosmology

People can then fetch it from the registry (and share their modifications):

$ docker pull binet/cosmodev
$ docker run -it -v ‘pwd‘/cosmodev-work:/work binet/cosmodev bash

[cosmodev] run-cosmomc

Application to Astrophysics/Cosmology

Imagine a control command application, developed in Java, with many Java
specific requirements (version, integrated editor, toolchain, ...)

> you want to closely monitor and control your dependencies

> you want to be able to quickly distribute the development environment

CANBUS

PC-104

ernet (TCP/IP)

m

CCSFCS

Application to Astrophysics/Cosmology

lsst-ccs/fcs

A container where all dependencies for FCS are installed.
FROM 1sst-ccs/base

MAINTAINER Sebastien Binet "binet@cern.ch"

USER root

ENV GOPATH /go

ENV PATH $GOPATH/bin:$PATH

anstall fcs deps

RUN pacman -S --noconfirm awk bash-completion jdk8-openjdk maven mysql
openssh sed subversion which xorg-server xorg-xclock xorg-xhost 1lib

create lsst user

RUN useradd -m -g users -G wheel -s /bin/bash lsst

USER 1sst

ENV HOME /home/lsst

CANOpen will need this port

EXPOSE 50000

JGroups will need this port

EXPOSE 45566

WORKDIR /opt/lsst
make the whole container seamlessly executable
CMD ["/bin/bash"]

Application to Astrophysics/Cosmology

Actually, this application also needs a database to log commands and monitor
data:

> embed the MySQL db into a container

» connect that container with the main container

FROM debian: jessie

RUN groupadd -r mysql && useradd -r -g mysql mysql

RUN mkdir /docker-entrypoint-initdb.d

RUN apt-get update && apt-get install -y perl --no-install-recommends &
rm -rf /var/lib/apt/lists/*

gpg: key H5072E1F5: public key "MyS({L Release Engineering <mysql-butld

RUN apt-key adv --keyserver ha.pool.sks-keyservers.net --recv-keys A4A9

ENV MYSQL_MAJOR 5.7

ENV MYSQL_VERSION 5.7.8-rc

RUN echo "deb http://repo.mysql.com/apt/debian/ jessie mysql-${MYSQL_MA

[...]

share mysql socket

VOLUME /var/lib/mysql

COPY docker-entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]

EXPOSE 3306

CMD ["mysqld"]

Application to Astrophysics/Cosmology

FCS-appliance

LSST/FCS

MySQL
Container vsQ

Container

A 4

A

Netbeans

FCS Hardware

/—\

> Deployable by Makefile
» Managed by git

Conclusions

» docker is a rather good tool to deploy applications in containers
> eases the life of developers and sysadmins (devops)

» docker isn't the only game in town

> rkt (rocket) from Core0S

> systemd-nspawn, now part of systemd

https://coreos.com/rkt/docs
http://0pointer.de/public/systemd-man/systemd-nspawn.html

References

www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-d
www.slideshare.net/dotCloud/docker-intro-november
sif.info-ufr.univ-montp2.fr/docker-talk
docs.docker.com/introduction/understanding-docker/

wiki. jenkins-ci.org/display/JENKINS/Docker+Plugin

kubernetes.io/

mesos.apache.org/

coreos.com/rkt/docs

http://www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-de-france-bordeaux-special-edition
http://www.slideshare.net/dotCloud/docker-intro-november
https://sif.info-ufr.univ-montp2.fr/docker-talk
https://docs.docker.com/introduction/understanding-docker/
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
http://kubernetes.io/
http://mesos.apache.org/
https://coreos.com/rkt/docs

	Main Talk
	slides

