
Docker & rkt: Linux containerization and applications in
astro/HEP

Sebastien Binet
CNRS/IN2P3/LPC

May 31, 2016

Docker origins

The container revolution

Before 1960, cargo transport looked like:

MxN combinatorics: matrix from Hell

Solution: Intermodal shipping container

Containers - analysis

I enables seamless shipping on roads, railways and sea (intermodal)

I standardized dimensions

I opaque box convenient for all types of goods (privacy)

What is Docker?

Application deployment

Note: a 3rd dimension (OS/platform) could be considered

Docker: an application container

Docker: no combinatorics no more

Docker

Docker is an open source project to pack ship and run any application as a
lightweight container: docker.io

Note: Although docker is primarily (ATM) Linux-oriented, it supports other
OSes (Windows+MacOSX) at the price of a thin Linux VM which is
automatically installed (and managed) on these systems. See docker

installation

http://www.docker.io
https://docs.docker.com/installation/
https://docs.docker.com/installation/

Docker

Docker is an open source project to pack ship and run any application as a
lightweight container: docker.io

High-level description:

I kind of like a lightweight VM

I runs in its own process space

I has its own network interface

I can run stuff as root

Low-level description:

I chroot on steroids

I container == isolated process(es)

I share kernel with host

I no device emulation

http://www.docker.io

Docker: why?

I same use cases than for VMs (for Linux centric workloads)

I speed: boots in (milli)seconds

I footprint: 100-1000 containers on a single machine/laptop, small disk
requirements

Docker: why?

Efficiency: almost no overhead

I processes are isolated but run straight on the host

I CPU performance = native performance

I memory performance = a few % shaved off for (optional) accounting

I network performance = small overhead

Docker: why?

Efficiency: storage friendly

I unioning filesystems

I snapshotting filesystems

I copy-on-write

Docker: why?

I provisionning takes a few milliseconds

I ... and a few kilobytes

I creating a new container/base-image takes a few seconds

Why are Docker containers lightweight?

Separation of concerns

Tailored for the dev team:

I my code

I my framework

I my libraries

I my system dependencies

I my packaging system

I my distro

I my data

Don’t care where it’s running or how.

Separation of concerns

Tailored for the ops team:

I logs

I backups

I remote access

I monitoring

I uptime

Don’t care what’s running in it.

Docker: blueprint

Docker: blueprint

Build, ship and run any application, anywhere.
Docker uses a client/server architecture:

I the docker client talks to

I a docker daemon via sockets or a RESTful API.

Docker: basics of the system

Docker: the CLI

The docker client ships with many a subcommand:

$ docker help

Usage: docker [OPTIONS] COMMAND [arg...]

docker daemon [--help | ...]

docker [-h | --help | -v | --version]

A self-sufficient runtime for containers.

[...]

Commands:

attach Attach to a running container

build Build an image from a Dockerfile

commit Create a new image from a container’s changes

cp Copy files/folders from a container to a HOSTDIR or to STDOUT

images List images

import Import the contents from a tarball to create a filesystem image

info Display system-wide information

[...]

Docker: the CLI

$ docker version

Client:

Version: 1.11.1

API version: 1.23

Go version: go1.6.2

Git commit: 5604cbe

Built: Mon May 2 00:06:51 2016

OS/Arch: linux/amd64

Server:

Version: 1.11.1

API version: 1.23

Go version: go1.6.2

Git commit: 5604cbe

Built: Mon May 2 00:06:51 2016

OS/Arch: linux/amd64

Hello World

Fetch a docker image from the docker registry:

$ docker pull busybox

Using default tag: latest

latest: Pulling from library/busybox

cf2616975b4a: Pull complete

6ce2e90b0bc7: Pull complete

8c2e06607696: Already exists

library/busybox:latest: The image you are pulling has been verified. Important: image verification is a tech preview feature and should not be relied on to provide security.

Digest: sha256:38a203e1986cf79639cfb9b2e1d6e773de84002feea2d4eb006b52004ee8502d

Status: Downloaded newer image for busybox:latest

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

busybox latest 8c2e06607696 4 months ago 2.43 MB

Now, run a command inside the image:

$ docker run busybox echo "Hello World"

Hello World

Docker basics
I Run a container in detached mode:

$ docker run -d busybox sh -c \

’while true; do echo "hello"; sleep 1; done;’

I Retrieve the container id:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

321c1aa5bcd4 busybox "sh -c ’while true; d" 3 seconds ago Up 2 seconds

I Attach to the running container:

$ docker attach 321c1aa5bcd4

hello

hello

[...]

I Start/stop/restart container

$ docker stop 321c1aa5bcd4

$ docker restart 321c1aa5bcd4

Docker: public index (aka registry, aka the Hub)
Docker containers may be published and shared on a public registry, the Hub.

I It is searchable:

$ docker search apache2

NAME STARS OFFICIAL AUTOMATED

rootlogin/apache2-symfony2 7 [OK]

reinblau/php-apache2 6 [OK]

tianon/apache2 4 [OK]

[...]

$ docker pull tianon/apache2

I Run the image and check the ports

$ docker run -d -p 8080:80 tianon/apache2

$ docker ps

CONTAINER ID IMAGE COMMAND PORTS

49614161f5b7 tianon/apache2 "apache2 -DFOREGROUND" 0.0.0.0:8080->80/tcp

The registry is also available from the browser:

I hub.docker.com

https://hub.docker.com

Docker: creating a customized image

I run docker interactively:

$ docker run -it ubuntu bash

root@524ef6c2e4ce:/# apt-get install -y memcached

[...]

root@524ef6c2e4ce:/# exit

$ docker commit ‘docker ps -q -l‘ binet/memcached

4242210aba21641013b22198c7bdc00435b00850aaf9ae9cedc53ba75794891d

$ docker run -d -p 11211 -u daemon binet/memcached memcached

a84e18168f1473a338f9ea3473dd981bf5e3dc7e41511a1252f7bb216d875860

$ docker ps

CONTAINER ID IMAGE COMMAND PORTS

a84e18168f14 binet/memcached "memcached" 0.0.0:32768->11211/tcp

Docker: creating a customized image

I interactive way is fine but not scalable

I enter Dockerfiles

I recipes to build an image

I start FROM a base image

I RUN commands on top of it

I easy to learn, easy to use

Docker: Dockerfile

FROM ubuntu:14.04

RUN apt-get update

RUN apt-get install -y nginx

ENV MSG="Hi, I am in your container!"

RUN echo "$MSG" > /usr/share/nginx/html/index.html

CMD nginx -g "daemon off;"

EXPOSE 80

Docker: Dockerfile-II

I run in the directory holding that Dockerfile

$ docker build -t <myname>/server .

$ docker run -d -P <myname>/server

I retrieve the port number:

$ docker ps

34dc03cdbae8 binet/server "/bin/sh -c ’nginx -g" 0.0.0.0:32770->80/tcp

or:

$ docker inspect -f ’{{.NetworkSettings.Ports}}’ 34dc03cdbae8

and then:

$ curl localhost:32770

Hi, I am in your container!

docker build

I takes a snapshot after each step

I re-uses those snapshots in future builds

I doesn’t re-run slow steps when it isn’t necessary (cache system)

Docker Hub

I docker push an image to the Hub

I docker pull an image from the Hub to any machine

This brings:

I reliable deployment

I consistency

I images are self-contained, independent from host

I if it works locally, it will work on the server

I exact same behavior

I regardless of versions, distros and dependencies

Docker for the developer

I manage and control dependencies

I if it works on my machine, it works on the cluster

I reproducibility

I small but durable recipes

Never again:

I juggle with 3 different incompatible FORTRAN compilers

I voodoo incantations to get that exotic library to link with IDL

I figure out which version of LAPACK works with that code

I ... and what obscure flag coaxed it into compiling last time

Development workflow

I Fetch code (git, mercurial, ...)

$ git clone git@github.com:sbinet/my-project.git

$ vim my-project/some-file.cpp &

$ docker run -it \

-v ‘pwd‘/my-project:/src \

-v ‘pwd‘/build:/build \

<my-name>/my-project-base-dev bash

I Edit code

I Mount code inside a build container with all dependencies pre-installed

I Build+test inside that container

I Retrieve the build artifacts under /build

Can be automatized via a Makefile:

I ideally, the my-project-base-dev image definition is provided by the git

repository

rkt

rkt: introduction

rkt is another Go-based application to run containers.
The main differences wrt docker are:

I an improved process model

I an improved security support

I a somewhat more UNIX -y philosophy (one tool per job)

rkt implements the ACI (App Container Images) format to ensure
portability and prevent lock-in.
rkt is also a partner of the OCI (Open Container Initiative) project.

https://coreos.com/rkt/docs
https://golang.org
https://github.com/appc/spec
https://www.opencontainers.org/

rkt: support for standards

ACI/appc and OCI try to standardize a few components of the container/image
ecosystem:

I container image format (appc)

I image distribution (appc)

I runtime (appc, OCI)

I on-disk image format (OCI)

rkt: process model

I rkt has no centralized "init" daemon

I rkt launches containers directly from client commands

I rkt is thus compatible with init systems (systemd, upstart, ...)

rkt: privilege separation

I standard UNIX group permissions

I signature verification of downloaded images (with simple user privileges)

rkt: hello world
Create a statically linked Go web server:

package main

import (

"log"

"net/http"

)

func main() {

http.HandleFunc("/", func(w http.ResponseWriter, r *http.Request) {

log.Printf("request from %v\n", r.RemoteAddr)

w.Write([]byte("hello\n"))

})

log.Fatal(http.ListenAndServe(":5000", nil))

}

Build with:

$ CGO_ENABLED=0 go build -ldflags ’-extldflags "-static"’ -o hello ./hello-web.go

$ file hello

hello: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), statically linked, not stripped

$ ldd hello

not a dynamic executable

rkt: create the image

To create the image, use the acbuild tool:

$ acbuild begin

$ acbuild set-name example.com/hello

$ acbuild copy hello /bin/hello

$ acbuild set-exec /bin/hello

$ acbuild port add www tcp 5000

$ acbuild label add version 0.0.1

$ acbuild label add arch amd64

$ acbuild label add os linux

$ acbuild annotation add authors "Carly Container <carly@example.com>"

$ acbuild write hello-0.0.1-linux-amd64.aci

$ acbuild end

This creates an ACI containing the application code and the needed metadata.

I advantage wrt a Dockerfile: this can easily and seamlessly be
integrated into Makefile -based workflows

https://github.com/appc/acbuild

rkt: run the container

$ rkt --insecure-options=image run hello-0.0.1-linux-amd64.aci

image: using image from local store for image name coreos.com/rkt/stage1-coreos:1.6.0

image: using image from file hello-0.0.1-linux-amd64.aci

networking: loading networks from /etc/rkt/net.d

networking: loading network default with type ptp

in another terminal:

$ rkt list

UUID APP IMAGE NAME STATE NETWORKS

37e2ee52 hello example.com/hello:0.0.1 running default:ip4=172.16.28.4

$ curl http://172.16.28.4:5000

hello

Astro/HEP application

Application to Astrophysics/Cosmology

Imagine a simulation program that is actually an assembly of many multiple
programs:

I a C++ library (compilable with a specific version of g++)

I a FORTRAN library (compilable with a specific version of gfortran)

I python2 bindings

I LAPACK, BLAS & Cython dependencies

After a while you realize, this was only tested on a specific Ubuntu version.
And people want to run or at least develop on their laptops (Linux and/or
MacOSX)...

Application to Astrophysics/Cosmology
from ubuntu:14.04

run apt-get update -y && apt-get install -y gcc g++ gfortran \

python python-numpy cython libblas-dev liblapack-dev \

make curl git

run mkdir -p /build/jla /build/salt2

run git clone https://github.com/lesgourg/class_public /build/class && \

cd /build/class && make

run cd /build/jla && \

curl -O -L http://supernovae.in2p3.fr/sdss_snls_jla/jla_likelihood_v6.tgz && \

tar zxf jla_likelihood_v6.tgz

run cd /build/jla/jla_likelihood_v6 && \

make && make test_jla

run cd /build/salt2 && \

curl -L http://supernovae.in2p3.fr/salt/lib/exe/fetch.php?media=snfit-2.4.2.tar.gz > snfit-2.4.2.tar.gz

run cd /build/salt2 && \

tar zxf snfit-2.4.2.tar.gz && \

cd snfit-2.4.2 && \

ls && \

./configure && \

make && make install

run git clone https://github.com/cmbant/CosmoMC /build/cosmomc && \

cd /build/cosmomc && \

BUILD=gfortran make

Application to Astrophysics/Cosmology

People can then fetch it from the registry (and share their modifications):

$ docker pull binet/cosmodev

$ docker run -it -v ‘pwd‘/cosmodev-work:/work binet/cosmodev bash

[cosmodev] run-cosmomc

Application to Astrophysics/Cosmology

Imagine a control command application, developed in Java, with many Java

specific requirements (version, integrated editor, toolchain, ...)

I you want to closely monitor and control your dependencies

I you want to be able to quickly distribute the development environment

Application to Astrophysics/Cosmology
lsst-ccs/fcs

A container where all dependencies for FCS are installed.

FROM lsst-ccs/base

MAINTAINER Sebastien Binet "binet@cern.ch"

USER root

ENV GOPATH /go

ENV PATH $GOPATH/bin:$PATH

install fcs deps

RUN pacman -S --noconfirm awk bash-completion jdk8-openjdk maven mysql \

openssh sed subversion which xorg-server xorg-xclock xorg-xhost libxtst;

create lsst user

RUN useradd -m -g users -G wheel -s /bin/bash lsst

USER lsst

ENV HOME /home/lsst

CANOpen will need this port

EXPOSE 50000

JGroups will need this port

EXPOSE 45566

WORKDIR /opt/lsst

make the whole container seamlessly executable

CMD ["/bin/bash"]

Application to Astrophysics/Cosmology
Actually, this application also needs a database to log commands and monitor
data:

I embed the MySQL db into a container

I connect that container with the main container

FROM debian:jessie

RUN groupadd -r mysql && useradd -r -g mysql mysql

RUN mkdir /docker-entrypoint-initdb.d

RUN apt-get update && apt-get install -y perl --no-install-recommends && \

rm -rf /var/lib/apt/lists/*

gpg: key 5072E1F5: public key "MySQL Release Engineering <mysql-build@oss.oracle.com>" imported

RUN apt-key adv --keyserver ha.pool.sks-keyservers.net --recv-keys A4A9406876FCBD3C456770C88C718D3B5072E1F5

ENV MYSQL_MAJOR 5.7

ENV MYSQL_VERSION 5.7.8-rc

RUN echo "deb http://repo.mysql.com/apt/debian/ jessie mysql-${MYSQL_MAJOR}-dmr" > /etc/apt/sources.list.d/mysql.list

[...]

share mysql socket

VOLUME /var/lib/mysql

COPY docker-entrypoint.sh /entrypoint.sh

ENTRYPOINT ["/entrypoint.sh"]

EXPOSE 3306

CMD ["mysqld"]

Application to Astrophysics/Cosmology

I Deployable by Makefile

I Managed by git

Conclusions

I docker is a rather good tool to deploy applications in containers

I eases the life of developers and sysadmins (devops)

I docker isn’t the only game in town

I rkt (rocket) from CoreOS

I systemd-nspawn, now part of systemd

https://coreos.com/rkt/docs
http://0pointer.de/public/systemd-man/systemd-nspawn.html

References

www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-de-france-bordeaux-special-edition

www.slideshare.net/dotCloud/docker-intro-november

sif.info-ufr.univ-montp2.fr/docker-talk

docs.docker.com/introduction/understanding-docker/

wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin

kubernetes.io/

mesos.apache.org/

coreos.com/rkt/docs

http://www.slideshare.net/jpetazzo/introduction-to-docker-december-2014-tour-de-france-bordeaux-special-edition
http://www.slideshare.net/dotCloud/docker-intro-november
https://sif.info-ufr.univ-montp2.fr/docker-talk
https://docs.docker.com/introduction/understanding-docker/
https://wiki.jenkins-ci.org/display/JENKINS/Docker+Plugin
http://kubernetes.io/
http://mesos.apache.org/
https://coreos.com/rkt/docs

	Main Talk
	slides

